Critical point theory of symmetric functions and closed geodesics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morse Theory , Floer Theory and Closed Geodesics of S

We construct Bott-type Floer homology groups for the sym-plectic manifold (T S 1 ; can) and Bott-type Morse homology groups for the energy functional on the loop space of S 1. Both objects turn out to be isomorpic to the singular homology of the loop space of S 1. So far our objects depend on all choices involved, but the above isomorphism suggests further investigation to show independence of ...

متن کامل

Distance Functions and Geodesics on Point Clouds

An new paradigm for computing intrinsic distance functions and geodesics on sub-manifolds of given by point clouds is introduced in this paper. The basic idea is that, as shown here, intrinsic distance functions and geodesics on general co-dimension sub-manifolds of can be accurately approximated by extrinsic Euclidean ones computed inside a thin offset band surrounding the manifold. This permi...

متن کامل

The Picard Group, Closed Geodesics, and Zeta Functions

In this article we consider the Picard group SL(2, Z[;']), viewed as a discrete subgroup of the isometries of hyperbolic space. We fix a canonical choice of generators and then construct a Markov partition for the action of the group on the sphere at infinity. Our main application is to the study of the zeta function associated to the associated three-dimensional hyperbolic manifold.

متن کامل

Loop Products and Closed Geodesics

The critical points of the length function on the free loop space Λ(M) of a compact Riemannian manifold M are the closed geodesics on M. The length function gives a filtration of the homology of Λ(M) and we show that the Chas-Sullivan product Hi(Λ)×Hj(Λ) ∗ Hi+j−n(Λ) is compatible with this filtration. We obtain a very simple expression for the associated graded homology ring GrH∗(Λ(M)) when all...

متن کامل

Lattice Point Generating Functions and Symmetric Cones

Abstract. We show that a recent identity of Beck–Gessel–Lee–Savage on the generating function of symmetrically contrained compositions of integers generalizes naturally to a family of convex polyhedral cones that are invariant under the action of a finite reflection group. We obtain general expressions for the multivariate generating functions of such cones, and work out their general form more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 1996

ISSN: 0926-2245

DOI: 10.1016/s0926-2245(96)00032-0